
MODELING ANISOTROPIC PLASTICITY: 3D EULERIAN 
HYDROCODE SIMULATIONS OF HIGH STRAIN RATE 

DEFORMATION PROCESES 

Michael W. Burkett', Sean P. Clancy', Paul J. Maudlin3, and Kathleen S. Holian' 

'Applied Physics Division, Primary Design and Assessment Group X-4 
'Applied Physics Division, Integrated Physics Methods Group X-3 

'Theoretical Division, Fluid Dynamics Group T-3 
Computing Communications and Networking Division, Scient$c Sofiare Engineering Group CCN-12 

Los Alamos National Laboratoryl Los Alamos, NM 87545 
I 

Abstract. Previously developed constitutive models and solution algorithms for anisotropic 
elastoplastic material strength have been implemented in the three-dimensional Conejo hydrodynamics 
code. The anisotropic constitutive modeling is posed in an unrotated material frame of reference using 
the theorem of polar decomposition to obtain rigid body rotation. Continuous quadratic yield functions 
fitted from polycrystal simulations for a metallic hexagonal-close-packed structure were utilized. 
Simple rectangular shear problems, R-value problems, and Taylor cylinder impact data were used to 
veri@ and validate the implementation of the anisotropic model. A stretching rod problem (involving 
large strain and high strain-rate deformation) was selected to investigate the effects of material 
anisotropy. Conejo simulations of rod topology were compared for two anisotropic cases. 

INTRODUCTION HYDROCODE ARCHITECTURE 

Accurate constitutive descriptions are 
required for high strain-rate deformation processes 
involving metals whose mechanical response 
shows significant directional dependence. The 
viability of utilizing anisotropic elastoplastic 
constitutive modeling to predict the large rigid 
body rotation and plastic deformation was shown 
previously (1). These calculations showed a large 
sensitivity to the yield function description for a 
hexagonal-close-packed material (high yield 
anisotropy). Constitutive models and solution 
algorithms for anisotropic elastoplastic material 
strength (2) developed for a Lagrangian (EPIC) 
continuum mechanics code have been implemented 
in the three-dimensional Conejo (3) code. Conejo 
was developed under the Accelerated Strategic 
Computing Initiative (ASCI) BLANCA code 
project. 

Conejo is an explicit, Eulerian continuum 
mechanics code that is used to predict formation 
processes associated with large material 
deformation at elevated strain-rates. Some special 
features of Conejo include a high-order advection 
algorithm, a material interface tracking scheme, 
and van Leer monotonic advection limiting. Conejo 
utilizes an object-oriented framework written in 
C++ called Tecolote. This framework is designed 
to facilitate the development and implementation 
of numerical and physical models that are used in 
hydrodynamic calculations. The Tecolote 
framework is built on the C++ POOMA library. 
POOMA or Parallel Object-Oriented Methods and 
Applications is an object-oriented framework for 
computational applications that require advanced 
parallel computers. POOMA provides Tecolote 
with fields (similar to Fortran-90 arrays) that 
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perform operations on parallel platforms 
efficiently store data in memory and streamline 
operations like divergence and gradient. The 
Blanca project team utilized many of these 
framework features during the implementation of 
the anisotropic plasticity model. 

ANISOTROPIC PLASTICITY MODEL 

The anisotropic constitutive modeling is 
posed in an unrotated material reference frame in 
order to satisfy constitutive modeling frame 
indifference. Constitutive modeling in this 
unrotated frame is convenient in that it can be 
performed while ignoring rigid body rotation as 
discussed below. Plasticity is assumed to be the 
dominant feature of our high-rate (lo4 to lo' 8-l) 
application problems of interest. As a result, we 
assume that the elastic part of the material response 
is isotropic. The anisotropic plastic potential or 
yield surface is represented with a general 
quadratic function (4) written in terms of the 
Cauchy stress and a fourth-order symmetric tensor: 

where is a flow stress and the shape a tensor 
expressed in Voigt-Mande! components has the 
form: 
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The constitutive model equations are 
expressed in rate form since Conejo solves a set of 
hyperbolic time-dependent equations. The 
traditional isotropic strength formulation found in 
most explicit hydrocodes uses an objective stress 
rate, a von Mises yield function, some realistic 
flow stress function and the geometric method of 
radial return. Our approach uses polar 
decomposition of the deformation gradient in rate 
form to obtain the rigid body rotation. We then 

rotate the symmetric part of the velocity gradient 
tensor (i.e., rate of deformation tensor) into an 
unrotated material frame, apply a geometric normal 
return solution scheme analogous to the radial 
return method to frnd the new stress state, and then 
rotate this stress back into the laboratory frame. 
The Euler-Rodrigues formulation is used to 
quantify the rigid body rotation in terms of a 
rotation angle and unit vector for better 
interpretation and subsequent advection. The 
model has been verified and validated on the 
simple rectangular shear problem, r-value 
problems and Taylor cylinder impact tests. The 
model has been applied to a stretching rod problem 
to investigate the effects of material anisotropy on 
plastic localization phenomena at strain rates of - 
104 s-'. Conejo predictions of the topology were 
compared for two anisotropic cases. 

R-VALUE PROBLEM 

Consider a rectangular bar uniaxially 
loaded in the 1 direction (long direction of bar) 
without initial specimen rotation, the r-value of 
interest is r23 which is the ratio of the plastic 
deformation rates in two orthogonal directions 
perpendicular to the load direction (5). We 
performed three r-value calculations using a set of 
tantalum (Ta) shape factors, a. Our computational 
model for this problem consisted of a 0.635 by 
0.635-cm cross-section rectangular bar that is 
placed in uniaxial tension by applying a 20 m/s 
uniform velocity field. The r-value was evaluated 
at the center (in terms of length and width) of the 
specimen segment. Steady state uniaxial stress 
conditions are required in order to evaluate the r- 
values. Each calculation assumed that the bar was 
uniaxially loaded in tension along the 1 axis. 
The calculations assumed rigid body rotations 
about the 1 , 2 ,  and 3 axes of 8 =  45 
degrees, respectively. 

Analytical r-value expressions in terms of 
orthotropic shape CoeEticients for uniaxial loading 
in the 1 direction for the three cases involving 
rigidbody rotation about the 1 ,  2 ,  and 3 axes 
respectively are: 



' h e  theoretical r23 values for Ta for the three 
loading cases are 1.00,0.7015, 1.290, respectively. 
Figure 1 shows the axes and angle definitions 
relative to the bar orientation and Figure 2 shows a 
comparison of the calculated (as a function of time) 
and the theoretical r-value for the three cases. The 
calculated values oscillate about the theoretical 
values as the stress state in the bar rings about the 
uniaxial stress condition. 
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FIGURE 1. Axes selections and computational model 
for r-value calculations. Case one rotation depicted. 

TAYLOR CYLINDER PROBLEM 

Taylor impact testing has been historically used to 
validate constitutive modeling in continuum 
mechanics codes (6). Comparisons of time 
resolved plastic wave propagation and final 
deformation shapes (cylinder side profiles and 
footprints) can be used to validate model 

predictions. We have performed preliminary 
anisotropic model validation calculations of a Ta 
Taylor Cylinder test. Also, we have performed 
isotropic cylinder impact test calculations so that 
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FIGURE 2. Comparison of theoretical and calculated r- 
values. 

comparisons of the deformation characteristics 
associated with anisotropic and isotropic modeling 
assumptions can be made. The cylinder was 0.381- 
cm in radius and 2.54-cm long traveling at 175 d s .  
Figure 3 contrasts the cylinder footprints for Ta 
isotropic and anisotropic yield surfaces after the 
plastic deformation process has completed (-80 
ps). The figures also show the magnitude of the 
Euler-Rodrigues angle (in radians) and vector 
orientation. These vectors are oriented in a 
counter-clockwise pattern indicating that the 
impact end of the cylinder is plastically deforming 
in the radial direction. For the isotropic case, the 
magnitude of the Euler-Rodrigues angle indicates 
that the deformation gradient is uniform: no 
circumferential rotation gradient and 
correspondingly no dependence upon the yield 
surface Orientation, applied load direction or initial 
material texture. Radial gradients in the Euler- 
Rodrigues angle indicate that most of the rigid 
rotation is concentrated at the perimeter of the 
footprint for both cases. In the anisotropic 
calculation, the variation in magnitude of the 
Euler-Rodrigues angle along the circumference of 
the cylinder shows that the deformation is non- 
uniform and is controlled by the interaction of the 
yield surface orientation, loading direction, and 
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PIGUNE 3. Taylor Cylinder calarlations sliowinig 
Euler-Rodrigucs angle and vwtotors for an isotropic (top) 
and anisotropic: (bottom) yield surface descriptimn for 
Ta.. Linear gradients in rotaktion an&: (radians) 
froin 0r.O to O,'Y71 (isotropic) and 0.0 to 0.9135 
(anisotropic) are realized. 

Pcrtuwbations arc stable (no nccks should develop 
on the rod surfacc) for r(r) 1. As thc rod is 
stretched, r(t) decreases. For r(t) < 1 ,  
pertnrbations can bccomc unstablc. Note that thc 
stability cquation indicates a softer flow stress 
prodlrices a morc stable rod geometry. Our 
numerical study of rod topology consists of a 
comparison of two anisotropic cascs (0' and 90" 
initial rottation about thc 1 or X axis). The Ta rod 
has an initial radius of 0.213-cm, an initial length 
ofO,,N:jZ-cm and an average slrain rate of- io4 US. 
Figure 4 shows; that the deformed cross section 
shapes me not circular but elliptical. Thc calculated 
topologies show a strong scnsitivity to the yield 
surftacc coefficients (a) or yield surface 
orientation for thc tensile plastic instability 
problem. 
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PLGURE 4. Comparison of rod cross sections at -25 s 
for CY and 90" initial rotation anglcs about the X axis. 
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